90,565 research outputs found

    Conversion of a gastric band into an intraperitoneal port in a patient with optimally debulked stage 3C serous ovarian carcinoma

    Get PDF
    Intraperitoneal (IP) chemotherapy in women with optimally debulked stage 3 ovarian cancer improves overall survival and progression-free survival, and its use has been encouraged in the adjuvant treatment of appropriately selected patients (Armstrong et al., 2006; Jaaback and Johnson, 2006). We describe a case in which a previously inserted adjustable gastric band was converted to an IP chemotherapy port during a laparotomy for advanced ovarian cancer

    Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids

    Get PDF
    Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis–Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions

    On spectral hypergraph theory of the adjacency tensor

    Full text link
    We study both HH and E/ZE/Z-eigenvalues of the adjacency tensor of a uniform multi-hypergraph and give conditions for which the largest positive HH or ZZ-eigenvalue corresponds to a strictly positive eigenvector. We also investigate when the EE-spectrum of the adjacency tensor is symmetric

    Mössbauer Spectrometry Study of Thermally-Activated Electronic Processes in Li_xFePO_4

    Get PDF
    The solid solution phase of Li_xFePO_4 with different Li concentrations, x, was investigated by Mössbauer spectrometry at temperatures between 25 and 210 °C. The Mössbauer spectra show a temperature dependence of their isomer shifts (E_(IS)) and electric quadrupole splittings (E_Q), typical of thermally activated, electronic relaxation processes involving ^(57)Fe ions. The activation energies for the fluctuations of E_Q and E_(IS) for Fe^(3+) are nearly the same, 570 ± 9 meV, suggesting that both originate from charge hopping. For the Fe^(2+) components of the spectra, the fluctuations of E_Q occurred at lower temperatures than the fluctuations of E_(IS), with an activation energy of 512 ± 12 meV for E_Q and one of 551 ± 7 meV for E_(IS). The more facile fluctuations of E_Q for Fe^(2+) are evidence for local motions of neighboring Li^+ ions. It appears that the electron hopping frequency is lower than that of Li^+ ions. The activation energies of relaxation did not have a measurable dependence on the concentration of lithium, x

    Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence

    Get PDF
    Imaging the band-to-band photoluminescence of silicon wafers is known to provide rapid and high-resolution images of the carrier lifetime. Here, we show that such photoluminescence images, taken before and after dissociation of iron-boron pairs, allow an accurate image of the interstitial iron concentration across a boron-doped p-type silicon wafer to be generated. Such iron images can be obtained more rapidly than with existing point-by-point iron mapping techniques. However, because the technique is best used at moderate illumination intensities, it is important to adopt a generalized analysis that takes account of different injection levels across a wafer. The technique has been verified via measurement of a deliberately contaminated single-crystal silicon wafer with a range of known iron concentrations. It has also been applied to directionally solidified ingot-grown multicrystalline silicon wafers made for solar cell production, which contain a detectible amount of unwanted iron. The iron images on these wafers reveal internal gettering of iron to grain boundaries and dislocated regions during ingot growth.D.M. is supported by an Australian Research Council QEII Fellowship. The Centre of Excellence for Advanced Silicon Photovoltaics and Photonics at UNSW is funded by the Australian Research Council

    A preliminary study on the affinities of Philippine, Bornean and New Guinean hepatics

    Get PDF
    The generic and specific affinities of the Philippine, Bornean and New Guinean hepatic floras were analyzed by calculating the Kroeber's percentage of similarity on the basis of recently published checklists. It is observed that the overall affinities parallel that exhibited by local moss floras except for one important difference. For the three areas, the number and distribution of species of large, actively evolving hepatic genera are noted to be disparate and with few shared taxa. Contrastingly, the large and actively evolving moss genera produce consistently large number of species in all three areas with an equally large number of shared taxa. The strong dependence of many hepatic taxa on asexual reproduction and the poor spore dispersability are accepted as the best explanation to this phenomenon
    corecore